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Outline

= Kernel methods
= Feature maps
= LMS (least mean squares) with features
= LMS with the kernel trick
" Properties of kernels



Feature maps



Feature maps

" |n previous methods (linear regression)
= Weuse8'x =60, + 0,x; + 0,x, to predict the label

* What if the label can be more accurately represented as a non-
linear function of x?

= Suppose the (new) feature is ok B
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Feature maps

= Consider the cubic functions
=y =0Tp(x) =0y + O,x + 0,x% + O;x3

" |n this case, the objective can be viewed as a linear function over
the variables ¢ (x)

" For clarity

= x: attributes
= p(x): features
" ¢: feature map



LMS with features



LMS

= Recall in linear regression, gradient descent gives

0:=0+ « Z (y® — hg(z)) 2

1=1
=0+« Z (y(i) — HTw(i)) @,
1=1
= Similarly, when with feature maps

0:=0+ Zn: (y(i) _ 9T¢(m(i))) d(z)

=1



Disadvantages

" Computationally expensive

" let ¢p(x) be the vector that contains all the
monomials of x with degree < 3

= Dimension of ¢(x): d3
» When d = 1000, 10°

= Can we avoid this?




Disadvantages

= Can we avoid this d3computation cost?

" Though the unknown vector 0 is also of
this dimension




LMS with the kernel trick
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Any great form of 07

= With the GD, 0 can be represented as a linear combination
of the vectors ¢p(x)

" By induction
= At step 0, initialize 8 =0 =Y;0 - p(xV)
= Suppose some step, 8 = Y; 5; - p(xV)

" Then in the next step no | |
0:=60+a Z (¥ — 67 (z?)) (=)

= Z Bip(z") + o Z (" = 076(z")) ¢(=")

—Z Bi+a(y —9T¢( ")) o(z?)
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ldea: represent 0 by [

= Derive the update rule of 5
Bi =B+« (y(i) — 9T¢(m(i)))

0 =737 Bip(zD)

Pi =B+ (?J(i) - Z ﬂjﬁb(z(j))TMfU(i)))
j=1

= Denote the inner product of the two feature vectors as (qb(x(j)), cp(x(i)))
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Can we accelerate computation?

" At each iteration, we need to compute

(p(xD), p(x)),vj, i € [n]

= Acceleration

" 1. It does not depend on iteration, we can compute it once before
starts

= 2. Computing the inner product does not necessarily require
computing qb(x(i)) (see the next page)
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Computing (p(xV)), p(x1))

d
(¢(z), ¢(2)) =1+ vazzz + Z T;ixj2i25 + Z LiLjX k2525 %k
i=1

i,je{1,...,d} ij,ke{l,....d}
d d 4 d 3
=1+ Z T;2; + (Z :czzz> + (Z :czzz)
=1 1=1 1=1

= Above all, the computation only requires O (d)

(5.9)

14



Kernel: definition

" Define the Kernel corresponding to the feature map @ as a
function that maps X XX — R satisfying

K(z,2) = (¢(z), $(2))
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The final algorithm

] Update ﬁ 1. Compute all the values K(z® 20) & (¢(z®), #(z))) using equa-
tion (5.9) for all ¢, j € {1,...,n}. Set B :=0.

2. Loop:

Vie{l,...,n},B; =06+« (y(i) — zn:ﬂjK(ac(i),:c(j))) (5.11)
j=1

Or in vector notation, letting K be the n X n matrix with K;; =
K(z®,z()), we have

B:=pB+a(y— Kp)

= Compute the prediction

Z Bid( (z) Z B.K (Z)
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Observation

" We do not need to know about the feature map, but only the
kernel function
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Properties of kernels
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What kinds of kernels can correspond to some feature map?

= Orin other words, given a kernel function K(+,-), can we tell if
there is some feature mapping ¢ so that K(x,z) = (¢(x), p(2))

" |Let’s consider some examples
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Example 1: K(z,2) = (z'2

= Reduction: gz, 2)
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" The feature mapping corresponds to ¢(z) =

)2
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L1122
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3X3
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Example 2

» Consider K(z,z) = (z72z+c)?
d d

= > (@x5)(zz) + ) (V2cx)(V2e2) + &
5,J=1 i=1

[ zy21 |
T1T2
I1T3
T2X1
ToX9
I2T3

* The feature mapping corresponds to 4@ = | =

3T

* The parameter c controls the relative jgﬁ?)
weighting between first- and second- e,

order terms V2cis



Example 3: K(z,2) = ("2 + ¢)f

= Corresponding of all monomials of the form x; , x;_, ... that are up
to order k

= Do not need to handle 0(d*) computation, but only O(d) for
kernel function
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Kernels as similarity metrics

= Different view of kernels from similarity
" If ¢(x) and ¢p(z) are close together, then expect K(x, z) to be large
" If p(x) and ¢(z) are far, expect K(x, z) to be small

" The kernel can be regarded as some similarity measures

" For example, _ 12
K(z,z) = exp <_||x dl )

202

" Closeto 1if xand z are similar

" Yes, this kernel is called the Gaussian kernel, and corresponds to some
feature mappings
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Necessary conditions for valid kernels

" What properties a kernel function satisfies?

= 1. Symmetric

Ki; = K(g;(z')’:,;(j)) = ¢(z(i))T¢($(j)) - ¢(x(j))T¢(x(i)) _ K(m(j)7:c(i)) = K,

= 2. Positive semi-definite .7k, —= S S ks,

S b,
i

= > >z ) de(a)pi(z)z
3 7 k

= Z Z Z 201(2D) i (7)) 2;
=y (Z %k(w(")))

k
> 0.




Sufficient conditions for valid kernels

" The necessary conditions are also sufficient

Theorem (Mercer). Let K : R x R? — R be given. Then for K

to be a valid (Mercer) kernel, it is necessary and sufficient that for any
{z) ... 2™} (n < 00), the corresponding kernel matrix is symmetric pos-
itive semi-definite.
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Applications of kernel methods

" Image classification with objective to be strings
" Each length-k substring in x can be regarded as features
= 26% substrings
* The feature dimension: 26
= Using kernel methods, the computational cost reduces to 26

= Kernel tricks:

" Any learning algorithm that you can write in terms of only inner
products <x,z> between input attribute vectors, then you can replace
this with K(x, z) where K is a kernel
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Summary

= Kernel methods

Feature maps

= Non-linear features
LMS (least mean squares) with features

LMS with the kernel trick
= @ is a linear combination of ¢ (x)

= Reduce the computational cost from 0 (d*) to 0(d)
Properties of kernels

= Symmetric, positive semi-definite
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