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§ Kernel methods
§ Feature maps
§ LMS (least mean squares) with features
§ LMS with the kernel trick
§ Properties of kernels



Feature maps
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Feature maps

§ In previous methods (linear regression)
§ We use 𝜃!𝑥 = 𝜃" + 𝜃#𝑥# + 𝜃$𝑥$ to predict the label

§ What if the label can be more accurately represented as a non-
linear function of 𝑥?

§ Suppose the (new) feature is 
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Feature maps

§ Consider the cubic functions
§ 𝑦 = 𝜃!𝜙 𝑥 = 𝜃" + 𝜃#𝑥 + 𝜃$𝑥$ + 𝜃%𝑥%

§ In this case, the objective can be viewed as a linear function over 
the variables 𝜙 𝑥

§ For clarity
§ 𝑥: attributes
§ 𝜙 𝑥 : features
§ 𝜙: feature map 5



LMS with features
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LMS

§ Recall in linear regression, gradient descent gives

§ Similarly, when with feature maps
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Disadvantages

§ Computationally expensive

§ let 𝜙(𝑥) be the vector that contains all the 
monomials of 𝑥 with degree ≤ 3
§ Dimension of 𝜙 𝑥 : 𝑑%

§ When 𝑑 = 1000, 10&

§ Can we avoid this?
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Disadvantages

§ Can we avoid this 𝑑!computation cost?

§ Though the unknown vector 𝜃 is also of 
this dimension
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LMS with the kernel trick
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Any great form of 𝜃?

§ With the GD, 𝜃 can be represented as a linear combination 
of the vectors 𝜙(𝑥)

§ By induction
§ At step 0, initialize 𝜃 = 0 = ∑' 0 ⋅ 𝜙(𝑥('))
§ Suppose some step, 𝜃 = ∑' 𝛽' ⋅ 𝜙(𝑥('))
§ Then in the next step
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Idea: represent 𝜃 by 𝛽

§ Derive the update rule of 𝛽

§ Denote the inner product of the two feature vectors as 𝜙 𝑥(") , 𝜙(𝑥($))
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Can we accelerate computation?

§ At each iteration, we need to compute 
𝜙 𝑥(#) , 𝜙(𝑥(%)) , ∀𝑗, 𝑖 ∈ [𝑛]

§ Acceleration
§ 1. It does not depend on iteration, we can compute it once before 

starts
§ 2. Computing the inner product does not necessarily require 

computing 𝜙(𝑥 ' ) (see the next page)
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Computing 𝜙 𝑥(2) , 𝜙(𝑥(3))
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§ Above all, the computation only requires 𝑂(𝑑)



Kernel: definition

§ Define the Kernel corresponding to the feature map 𝜑 as a 
function that maps 𝒳×𝒳 → 𝑅 satisfying
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§ Update 𝛽

§ Compute the prediction

The final algorithm
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§ We do not need to know about the feature map, but only the 
kernel function

Observation
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Properties of kernels
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§ Or in other words, given a kernel function 𝐾 ⋅,⋅ , can we tell if 
there is some feature mapping 𝜙 so that 𝐾 𝑥, 𝑧 = 𝜙 𝑥 , 𝜙(𝑧)

§ Let’s consider some examples

What kinds of kernels can correspond to some feature map? 
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Example 1: 
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§ Reduction:

§ The feature mapping corresponds to 



Example 2

§ Consider

§ The feature mapping corresponds to
§ The parameter c controls the relative 

weighting between first- and second-
order terms
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Example 3: 
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§ Corresponding of all monomials of the form 𝑥%! , 𝑥%" , … that are up 
to order 𝑘

§ Do not need to handle 𝑂(𝑑&) computation, but only 𝑂(𝑑) for 
kernel function 



Kernels as similarity metrics

§ Different view of kernels from similarity
§ If 𝜙(𝑥) and 𝜙(𝑧) are close together, then expect 𝐾(𝑥, 𝑧) to be large
§ If 𝜙(𝑥) and 𝜙(𝑧) are far, expect 𝐾(𝑥, 𝑧) to be small

§ The kernel can be regarded as some similarity measures
§ For example,

§ Close to 1 if x and z are similar
§ Yes, this kernel is called the Gaussian kernel, and corresponds to some 

feature mappings
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Necessary conditions for valid kernels

§ What properties a kernel function satisfies?
§ 1. Symmetric

§ 2. Positive semi-definite
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Sufficient conditions for valid kernels

§ The necessary conditions are also sufficient
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Applications of kernel methods

§ Image classification with objective to be strings
§ Each length-k substring in x can be regarded as features
§ 26* substrings
§ The feature dimension: 26*

§ Using kernel methods, the computational cost reduces to 26

§ Kernel tricks: 
§ Any learning algorithm that you can write in terms of only inner 

products <x,z> between input attribute vectors, then you can replace 
this with K(x, z) where K is a kernel
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Summary

§ Kernel methods
§ Feature maps

§ Non-linear features

§ LMS (least mean squares) with features
§ LMS with the kernel trick

§ 𝜃 is a linear combination of 𝜙(𝑥)
§ Reduce the computational cost from 𝑂(𝑑%) to 𝑂(𝑑)

§ Properties of kernels
§ Symmetric, positive semi-definite
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